Geometric modeling and meshing for numerical simulation

#### **Chapter 1 Introduction**

- 1.1 Open software for CAD and modeling
- 1.2 Open software for Finite Element Analysis (FEA)

### Chapter 2 Installing SALOME-MECA

- 2.1 Windows
- 2.2 Linux
- 2.3 Mac-OS

#### **Chapter 3 The SALOME-MECA platform**

- 3.1 Presentation of the Salome-Meca platform
- 3.2 The Salome-Meca modules
  - The SHAPER module
  - The GEOM module
  - The MESH module
  - The PARAVIS module
- 3.3 Online documentation



Geometric modeling and meshing for numerical simulation

#### Chapter 4 Drawing sketches: the SHAPER module

- 4.1 Introduction to SHAPER module
- 4.2 The SHAPER interface
  - General application preferences
- 4.3 Description of the main entities of SHAPER
  - Parts
  - Sketches
  - Sketch objects
  - Sketch constraints
  - Overconstrained sketches
  - Sketch operations
  - Parameters
- 4.4 Drawing sketches
- 4.5 Exporting/importing geometries
- 4.6 Exercises

#### Chapter 5 Modeling: the GEOM module

- 5.1 Introduction to GEOM module
- 5.2 Geometric entities



Geometric modeling and meshing for numerical simulation

- 5.3 The GEOM interface
- 5.4 Creating elements
- 5.5 Examples of creation of elements
- 5.6 Creating primitives
- 5.7 Examples of creation of primitives
- 5.8 Editing elements
- 5.9 Boolean operations: fuse, common, cut, intersection
- 5.10 Translation, rotation, multi-translation, multi-rotation
- 5.11 More operations: partition, compound, extrusion, revolution
- 5.12 Creating groups
- 5.13 Importing/exporting geometries
- 5.14 Exercises

# Chapter 6 Meshing: the MESH module

- 6.1 Introduction to MESH module
- 6.2 The MESH interface
- 6.3 Algorithms for meshing
- 6.4 Hypotheses for meshing



Geometric modeling and meshing for numerical simulation

- 6.5 Creating meshes
  - \* The 'Create Mesh' window
  - \* Classical procedure to create a finite element mesh
  - \* Example-1 (2D)
  - \* Example-2 (2D)
  - \* Example-3 (2D)
  - \* Example-4 (2D)
  - \* Example-5 (2D)
  - \* Example-6 (2D)
  - \* Example-7 (3D)
  - \* Example-8 (3D)
  - \* Example-9 (3D)
  - \* Example-10 (3D)
  - \* Example-11 (3D)
  - \* 'Convert to quadratic' command
- 6.6 Creating groups
  - \* Groups from geometry
  - \* Groups on the mesh
- 6.7 Modifications of the mesh



Geometric modeling and meshing for numerical simulation

- 6.8 Clipping meshes
- 6.9 Control of the mesh
- 6.10 Exercises

#### Chapter 7 Postprocessing: the PARAVIS module

- 7.1 The PARAVIS postprocessor
- 7.2 The PARAVIS interface
  - Sources
- 7.3 Postprocessing with PARAVIS
  - Types of files accepted
  - Postprocessing a solved example
  - Drawing on the deformed shape: Warp By Vector
  - Clipping
  - Slicing
  - Isosurfaces
  - Drawing separated groups
  - Drawings along a line: Plot Over Line
  - 3D Glyphs (arrow) representation
- 7.4 The ASTER Study postprocessor



Geometric modeling and meshing for numerical simulation

Contents

# 2022. All rights erty of nts reserved **End of Contents** Material property of Miguel Cerrolaza Material property of Miguel Cerrolaza All rights reserved. All rights re All rights

